How to Deliver Business Impact with Data

Tips for Developing Data Products

Post was originally published in January 2020 and has been updated in May and June 2020 for relevance.

I learned to ask all of these questions during the kick-off the hard way. Data Analytics/Business Intelligence/Data Science/Analytics/Machine Learning should not be done in a vacuum or for the sake of doing BI/ML/AI. Instead, it should aim to be part of a data product deliverable that helps bring value back to the customers and the business.

What is a data product?

  • A product is something that's "offered to a market to solve a problem, or to satisfy a want or need" [Koombea].

  • A data product solves your customer(s) pain-point by leveraging data.

What does a data product deliverable look like?

Ahead of any development, it helps to know the following about the -- business and the stakeholder/customer -- ask, to help you scope out what it will take to deliver a data product:

  • How does the company make money? What is its core mission?

  • What is your customer really after? e.g. What is the underlying goal (vs. an ask to do X approach)? What is their pain point?

  • Why is this initiative important now (above all other priorities)?

  • What is the business question?

    • e.g. Suppose your client/company spent $200K on data + salary. How can the data product you create business impact? Generate (or save) $300K for the business? $400K+?

  • How will the results/deliverable be used by the stakeholder, to answer the business question?

  • Who is the stakeholder that will use the deliverable?

  • Does the stakeholder have any ideas/directions they'd like you to explore? (e.g. If the deliverable is a visual, did they have a sample visual/infographic in mind?)

  • Has this question been answered before? If so, what was done? what didn't work? what are some lessons learned? What would they like to do differently? What is the business logic we should include?

  • Are we on the same page about what the scoped-down, POC deliverable will look like?

  • What will it take to get the deliverable into production? What's the rollout strategy to customers? What does the input and output format look like?

  • Does the deliverable have an associated KPI?

  • What's the deadline and associated checkpoints?

  • Recommendation: Start with descriptive analyses; only when you understand what happened in the past, should you move onto predictive analyses to forecast what may happen in the future.

If you need an expert to help you scope out your next data product -- or you'd like to swap horror stories, please reach out.

Keywords: Data products, business impact and value

You may also like: