Breaking into your First Data Role: Tips to Tackling the Cold Start Problem

Tips for the Aspiring Data Scientist, Data Analyst, Machine Learning Engineer, Data Engineer or Analytics Engineer

Post was originally published in October 2019 and has been updated in May + September 2020 for relevancy.

Question: What can I do to break into -- or transition careers into -- my first role as a Data Scientist, Data Analyst, Machine Learning Engineer, Data Engineer or Analytics Engineer?

Answer: ...it depends. It mainly depends on your interests, technical and soft skills, and your application strategy.

Advice on how to improve your technical skills also depends... on how you learn best, how much coding is required for the role, how much you're comfortable with, what you're looking to get out of the class/blog, etc. Having said that, here's my step-by-step guide that can help you break in:

  1. Determine how you learn best:

    • self-paced: through books/videos/blogs?

    • instructor-based: through college/university/bootcamp? If so, please see my tips for continuing education here.

    • application-based: by developing your first, proof-of-concept data-centric project at your current job, or on your own?

  2. Have the end goal in mind. What would you (ideally) do in the role? What's the (approximate) breakdown of responsibilities by business, technical and statistical expertise that you'd prefer to do?

    • e.g. Would you prefer roles that are more internal/external client facing than technical? Or vice versa?

    • e.g. If you're looking for an Analyst role, would you prefer to be a BI Analyst, Data Analyst, Product Analyst or an Analytics Engineer?

  3. Determine what industry/industries you want to get into.

  4. Research (ideal) job postings and figure out what (if any) skill gaps you have.

  5. (Easier said than done) I highly encourage you to develop a demo (project, tutorial, talk, notebook, etc.) -- that you can link to -- that answers a key business question in that industry and fills-in 1+ (if any) gaps that you've identified in Step (4).

    • Bonus points if the business question relates to -- or is explicitly mentioned in -- the job opportunities you've identified in Step (4).

    • Bonus points if you're transitioning careers and "can leverage your existing expertise on a domain you understand well", recommends Jason Yamada-Hanff.

Then, as part of your application strategy:

  1. Tailor your resume to the role

  2. Then, in an interview, your portfolio/demo will give you an edge by showcasing your communication skills, business knowledge, and technical expertise.

  3. Show up (virtual/in-person) -- even if it's once per month -- for meet-ups focused on your ideal industry and technical role(s) (from Steps 3 + 4 above). Please note: these may be different meet-ups.

  4. When you reach out to prospective employers, you do so with a tailored message.

    • Please note: If you change the company name/industry/etc. and the content is still relevant, then the note is too general.

  5. Avoid 7 mistakes you might be making before your job interview even happens

If you need additional support, please check out:

and let me know what worked for you. Good luck!


Keywords: Data Science careers, breaking into data, data products

You may also like: